Adaptive finite elements with high aspect ratio for the computation of coalescence using a phase-field model
نویسندگان
چکیده
A multiphase-field model for the description of coalescence in a binary alloy is solved numerically using adaptive finite elements with high aspect ratio. The unknown of the multiphase-field model are the three phase fields (solid phase 1, solid phase 2, and liquid phase), a Lagrange multiplier and the concentration field. An Euler implicit scheme is used for time discretization, together with continuous, piecewise linear finite elements. At each time step, a linear system corresponding to the three phases plus the Lagrange multiplier has to be solved. Then, the linear system pertaining to concentration is solved. An adaptive finite element algorithm is proposed. In order to reduce the number of mesh vertices, the generated meshes contain elements with high aspect ratio. The refinement and coarsening criteria are based on an error indicator which has already been justified theoretically for simpler problems. Numerical results on two test cases show the efficiency of the method. 2003 Elsevier Inc. All rights reserved.
منابع مشابه
A Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results
This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...
متن کاملA Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results
This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...
متن کاملUnsteady Numerical Investigations of Flow and Heat Transfer Characteristics of Nanofluids in a Confined Jet Using Two-Phase Mixture Model
The development of high-performance thermal systems has increased interest in heat transfer enhancement techniques. The application of additives to heat transfer liquids is one of the noticeable effort to enhance heat transfer. In this paper two-dimensional unsteady incompressible nanofluid flow in a confined jet at the laminar flow regime is numerically investigated. The Mixture model is consi...
متن کاملFast Finite Element Method Using Multi-Step Mesh Process
This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...
متن کاملSensitivity Analysis of Road Actual Conditions to Evaluate the Optimal Positioning of Geogrid Using Finite Elements and Dynamic Methods
Roads are subjected to vehicle traffics with different loads and velocities. Geogrid reinforcement is of the best methods for road improvement due to the ease of construction, delay in damage development and financial efficiency. This study evaluates pavement response under different loads and velocities, before and after geogrid reinforcement. A finite element software (ABAQUS) is used for num...
متن کامل